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A newly emerging dimension of nano
electromagnetic effects in nanostructures
spin) that is associated with all fundamental
of a particle is directly proportional to 
spin on a single electron level, information
magnetism in the future. 
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1. INTRODUCTION 

 

SPINTRONICS, A NEW 

NANOELECTRONICS ADVENTURE

Spintronic devices, which exploit the spin of the 

electron, are particularly attractive for memory 

storage and magnetic sensor applications, and 

potentially for quantum computing. Difficult 

materials challenges must be overcome in order to 

fabricate a semiconductor-based electronic device 

where the spin controls the characteristics. When 

combining magnetic materials with 

semiconductors in a single device it is important 
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ABSTRACT 

nano electronics is "spintronics". Spintronics 
es and molecules caused by the quantized angular

fundamental particles like, for example, the electron. The
 its spin. Hence, if we learn to manipulate not only

information may be stored and transported in the form 
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'Spinning electrons' in semiconductor 

components 

The manipulation of charge in a semiconductor is 

so natural that one is inclined to forget another 

important property of the charge carriers: the spin. 

The electron has an intrinsic angular momentum 

with  

a spin value of ½. The spin can be in 2 states, 

spin-up or spin-down. In standard electronic 

devices, equal numbers of spin-up and spin

electrons make up the electric current. By 

introducing an imbalance in spin-up versus spin

down electrons, one can start to consider 

electronic devices that function on the spin of the 

carriers rather than on the charge. 

Since the electron's magnetic momentum is 

proportional to its spin, spintronics is intrinsically 

linked to magnetism. Magnetoelectronic

such as magnetic memory elements, read heads, 

and industrial sensors already exploit the unique 

properties of magnetic materials. Their 

functionality is based on the giant 

magnetoresistance (GMR) effect: depending on 

the relative orientation of the magnetization in the 

magnetic layers, the device resistance changes 

from small (parallel magnetizations) to large (anti

parallel magnetizations). This change in resistance 

is used to sense changes in magnetic fields.

The field of spintronics is extremely young and it 

is difficult to predict how it will evolve. Current 
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'Spinning electrons' in semiconductor 

The manipulation of charge in a semiconductor is 

so natural that one is inclined to forget another 

important property of the charge carriers: the spin. 

momentum 

a spin value of ½. The spin can be in 2 states, 

down. In standard electronic 

up and spin-down 

electrons make up the electric current. By 

up versus spin-

trons, one can start to consider 

electronic devices that function on the spin of the 

Since the electron's magnetic momentum is 

proportional to its spin, spintronics is intrinsically 

linked to magnetism. Magnetoelectronic devices 

such as magnetic memory elements, read heads, 

and industrial sensors already exploit the unique 

properties of magnetic materials. Their 

functionality is based on the giant 

magnetoresistance (GMR) effect: depending on 

e magnetization in the 

magnetic layers, the device resistance changes 

from small (parallel magnetizations) to large (anti-

parallel magnetizations). This change in resistance 

is used to sense changes in magnetic fields. 

young and it 

is difficult to predict how it will evolve. Current 

research mainly focuses on demonstrating the 

spintronic effect by mimicking existing 

semiconductor devices using a combination of 

magnetic and semiconductor materials. Examples 

of such devices are the spin

transistor), where a magnetic source and drain are 

used in a FET; the spin-valve transistor, where a 

magnetic multilayer replaces the metal base; and 

spin-LEDs (light-emitting devices). These 

structures are by no means imp

the original device. The manipulation of spins 

rather than electrons does not (yet) add more 

functionality or yield higher performance. These 

devices are important because such novel 

'transistors' reveal the complexity of the 

magnetic/semiconductor materials combination 

and improve our understanding of spin

Hybrid devices: the spin-

achieve a spintronic device in which spin

transport dominates, a magnetic material must be 

brought in close contact with the semi

A common way to combine these materials is to 

epitaxially grow the magnetic materials on the 

semiconductor substrate. Epitaxy helps control the 

crystalline orientation of the metallic layer and as 

such, the magnetic anisotropy of the film.

However, two important drawbacks limit epitaxy's 

applicability: (1) the interface is in many cases not 

thermodynamically stable and (2) the fabrication 

of a buried structure turns out to be nearly 
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impossible, because the re-growth of a 

semiconductor layer on a metal has so far not led 

to acceptable semiconductor properties. More 

complex device concepts embed a magnetic 

material in the device structure. For example, the 

spin-valve transistor (SVT) incorporates a spin

valve in the metal base. In a spin-valve, whic

basically consists of two magnetic layers 

separated by a precious metal, the resistance 

depends on the relative orientation of the 

magnetization in the layers. SVT fabrication 

requires an approach other than epitaxy. 

One way to achieve this structure is to join the two 

semiconductor substrates constituting the 

and collector of the transistor structure. This SVT 

does not rely on spin-dependent transport in the 

semiconductor, but builds on the spin-scattering of 

hot electrons in metallic layers. Scattering of hot 

electrons is not yet well understood. The transfer 

coefficient (a), defined as the ratio of the collected 

current to the injected current, is of the order of 

10-4% and hence seriously limits the applicability 

of the device. Enhancement of the Schottky 

barrier height at the collector improves a and 

reduces leakage current.                                                                 

IMEC obtained good results by growing an AlAs 

(2 nm)/GaAs (4nm) periodic structure on top of a 

lowly-doped emitter layer, resulting in a quantum

well structure. After implementation of such an 
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scattering of 
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barrier height at the collector improves a and 

reduces leakage current.                                                                                            

IMEC obtained good results by growing an AlAs 

e on top of a 

doped emitter layer, resulting in a quantum-

well structure. After implementation of such an 

emitter in a SVT, we improved a by 10

Schematic representation of a GaAs/Si spin

transistor, indicating the different electrical cur

components determining its operation. 

Source: IMEC. Click image for larger version

Spin-injection in a semiconductor

 

To make new spintronic components a reality, 

research must address three different problem 

areas. One is the creation of a spin

semiconductor. This "spin-

creating a situation with majority and minority 

spins. A second problem is external control over 

the spin-packet movement, coherence and lifetime 

on a (sub-)micron scale in the time frame of nano

to microseconds. The third problem is the external 

observation of a discernible spintronic effect that 

could be used to interpret or 'read' the outcome of 

a spintronic device function. 

How to inject electrons with definite spin? In a 

research environment, spin-polarized electrons are 

often optically generated using circularly 

 

) International journal of engineering sciences and management              50 

emitter in a SVT, we improved a by 10-2%. 

 
Schematic representation of a GaAs/Si spin-valve 

transistor, indicating the different electrical current 

components determining its operation. 

Click image for larger version 

injection in a semiconductor 

To make new spintronic components a reality, 

research must address three different problem 

areas. One is the creation of a spin-ensemble in a 
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creating a situation with majority and minority 

spins. A second problem is external control over 

packet movement, coherence and lifetime 

)micron scale in the time frame of nano- 

icroseconds. The third problem is the external 

observation of a discernible spintronic effect that 

could be used to interpret or 'read' the outcome of 
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often optically generated using circularly 
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polarized light. However, for spintronics, one 

would prefer an all-electrical source. Alternatives 

are: (a) a diffusive Ohmic contact; (b) 100% 

polarized injectors, such as half-metals; (c

injectors and (d) a (buried) magnetic 

semiconductor structure as spin-filter or spin

injector. The discussion below is focused on 

IMEC's recent results in the development of a 

half-metallic spin-source, a tunnel-barrier spin

source and the use of magnetic semiconductors.

A half-metallic spin-source 

Half-metallic ferromagnets such as NiMnSb can 

be grown epitaxially on GaAs(100) and (111). 

NiMnSb is half-metallic in the bulk. It has, 

however, been much more difficult to establish a 

high degree of spin-polarization at the surface of 

NiMnSb thin films. A key issue here is to have 

well-controlled surfaces. For the injection of spin

polarized carriers into a semiconductor, not the 

top surface but the bottom interface of the 

ferromagnetic material is important. It is crucial to 

obtain a high crystal quality from the initial 

nucleation phase on. The crystal structure of 

NiMnSb is very closely related to the zincblende 

structure of III-V semiconductors, making the 

NiMnSb/GaAs combination a very good candidate

for atomically controlled interfaces. A typical 

sample consists in a 200nm GaAs buffer and 260 

to 350nm thick NiMnSb films. These structures 

are currently being incorporated in spin
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electrical source. Alternatives 
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filter or spin-

injector. The discussion below is focused on 
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barrier spin-
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metallic ferromagnets such as NiMnSb can 

be grown epitaxially on GaAs(100) and (111). 

metallic in the bulk. It has, 

however, been much more difficult to establish a 

polarization at the surface of 

NiMnSb thin films. A key issue here is to have 

controlled surfaces. For the injection of spin-

polarized carriers into a semiconductor, not the 

top surface but the bottom interface of the 

tant. It is crucial to 

obtain a high crystal quality from the initial 

nucleation phase on. The crystal structure of 

NiMnSb is very closely related to the zincblende 

V semiconductors, making the 

NiMnSb/GaAs combination a very good candidate 

for atomically controlled interfaces. A typical 

sample consists in a 200nm GaAs buffer and 260 

to 350nm thick NiMnSb films. These structures 

are currently being incorporated in spin-injection 

structures to evaluate their high (close to 100%) 

spin-polarization. 

Magnetic semiconductors 

The problems associated with the 

metal/semiconductor interface can be 

circumvented by incorporating a high density of 

magnetic impurities (such as Mn) into the III

semiconductor to obtain a (ferro)magnetic 

semiconductor such as GaMnAs

exact nature of the magnetism is still under intense 

study, researchers have obtained moderate spin

injection efficiencies using GaMnAs as a spin

injector. One of the challenges is to incorporate 

the magnetic structures in semiconductor 

heterostructures such that the spintronic properties 

of GaMnAs can be exploited. 

A tunnel-barrier spin- source

An alternative approach is to use a tunnel

spin-injector, based on existing expertise in the 

fabrication of magnetic tunnel junctions. Here, the 

magnetic properties can be well controlled at the 

metal/insulator interface. This interface will be 

more stable over time and will be less sensitive to 

temperature changes than direct 

metal/semiconductor heterostructures.

IMEC has measured the spin

injection of such a structure through its optical 

response. For this purpose, we fabricated a tunnel 

contact spin-LED, consisting of a GaAs

light-emitting device structure using a 
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structures to evaluate their high (close to 100%) 
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metal/semiconductor interface can be 
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ferromagnetic metal. The magnetic contact 

(CoFe/NiFe) injects spin-polarized current 

through an Al2O3 barrier in the active region of 

the LED. The optical selection rules in GaAs lead 

to the generation of circularly polarized light, 

which is analyzed to measure the degree of spin

injection. This measurement approach 

unambiguously shows the signature of spin

injection. 

With these injector structures, spin-injection at 

room temperature is possible using a standard 

metal/insulator/semiconductor technology. The 

injection efficiency of the first devices was above 

8% (80K).  

Spintronics paves the way to quantum 

computation 

In addition to the near-term studies of spin

transport properties of semiconductors, there is a 

lot of enthusiasm for a long-term and more 

ambitious application of the electron 

spin: quantum computation, where spins ar

very promising quantum-effect to deal with. The 

spins of the electrons (and spin-½ nuclei) are good 

candidates for qubits or quantum bits, one of the 

three cornerstones of future quantum computers. 

The requirements for such application area are 

still under discussion. 

2. Conclusion 

The use of the electron spin in semiconductor 

devices is an increasingly active area of research. 
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effect to deal with. The 
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three cornerstones of future quantum computers. 

The requirements for such application area are 

The use of the electron spin in semiconductor 

devices is an increasingly active area of research. 

Recently, a breakthrough has been realized in the 

area of spin-injection, the problem of injecting 

spin-polarized current in a sem

However, the spintronics field requires a shift in 

thinking about computing as we know it today. 

Making spintronic devices a reality requires a 

substantial amount of fundamental materials 

development, together with the experimental 

characterization of spin properties in complex 

heterostructures. Only then can the additional 

functionality of spintronic devices be evaluated. 

The key question will be whether any potential 

benefit of such technology will be worth the 

production costs. 

Degree of circular polarization of the spin

magnetic metal/Al2O3 tunnel barrier contact (80K). 

Source: IMEC. Click for larger version
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